Abstract

The concept of matching dependencies (mds) has recently been proposed for specifying matching rules for object identification. Similar to the functional dependencies (with conditions), mds can also be applied to various data quality applications such as detecting the violations of integrity constraints. In this paper, we study the problem of discovering similarity constraints for matching dependencies from a given database instance. First, we introduce the measures, support and confidence, for evaluating the utility of mds in the given data. Then, we study the discovery of mds with certain utility requirements of support and confidence. Exact algorithms are developed, together with pruning strategies to improve the time performance. Since the exact algorithm has to traverse all the data during the computation, we propose an approximate solution which only uses part of the data. A bound of relative errors introduced by the approximation is also developed. Finally, our experimental evaluation demonstrates the efficiency of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.