Abstract

SUMMARYSimulation of acoustic wave propagation in the Laplace–Fourier (LF) domain, with a spatially uniform mesh, can be computationally demanding especially in areas with large velocity contrasts. To improve efficiency and convergence, we use 3-D second- and fourth-order velocity-pressure finite difference (FD) discontinuous meshes (DM). Our DM algorithm can use any spatial discretization ratio between meshes. We evaluate direct and iterative parallel solvers for computational speed, memory requirements and convergence. Benchmarks in realistic 3-D models and topographies show more efficient and stable results for DM with direct solvers than uniform mesh results with iterative solvers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call