Abstract
While latent variable models have been successfully applied in many fields and underpin various modeling techniques, their ability to incorporate categorical responses is hindered due to the lack of accurate and efficient estimation methods. Approximation procedures, such as penalized quasi-likelihood, are computationally efficient, but the resulting estimators can be seriously biased for binary responses. Gauss–Hermite quadrature and Markov Chain Monte Carlo (MCMC) integration based methods can yield more accurate estimation, but they are computationally much more intensive. Estimation methods that can achieve both computational efficiency and estimation accuracy are still under development. This paper proposes an efficient direct sampling based Monte Carlo EM algorithm (DSMCEM) for latent variable models with binary responses. Mixed effects and item factor analysis models with binary responses are used to illustrate this algorithm. Results from two simulation studies and a real data example suggest that, as compared with MCMC based EM, DSMCEM can significantly improve computational efficiency as well as produce equally accurate parameter estimates. Other aspects and extensions of the algorithm are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.