Abstract

Lithium- and manganese-rich layered oxide cathode materials have attracted extensive interest because of their high energy density. However, the rapid capacity fading and serve voltage decay over cycling make the waste management and recycling of key components indispensable. Herein, we report a facile concentrated solar radiation strategy for the direct recycling of Lithium- and manganese-rich cathodes, which enables the recovery of capacity and effectively improves its electrochemical stability. The phase change from layered to spinel on the particle surface and metastable state structure of cycled material provides the precondition for photocatalytic reaction and thermal reconstruction during concentrated solar radiation processing. The inducement of partial inverse spinel phase is identified after concentrated solar radiation treatment, which strongly enhances the redox activity of transition metal cations and oxygen anion, and reversibility of lattice structure. This study sheds new light on the reparation of spent cathode materials and designing high-performance compositions to mitigate structural degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.