Abstract
Direct differentiation of dopaminergic (DA) neurons from human pluripotent stem cells (hPSCs) in the absence of gene manipulation is the most desired alternative to clinical treatment of Parkinson disease. Protein transduction-based methods could be efficient, safe approaches to enhance direct differentiation of human embryonic stem cells (hESCs) to DA neurons. In the present study, we compared the differentiation efficiency of DA neurons from hESCs with and without the application of LIM homeobox transcription factor 1 alpha (LMX1A), a master regulatory protein in the development of the midbrain neurons and SHH proteins. The results obtained revealed that the treatment of hESCs with recombinant LMX1A (rLMX1A) protein along with dual SMAD inhibition led to higher expression of LMX1B, LMX1A, FOXA2, PITX3, EN1, and WNT1 effector endogenous genes and two-fold expression of PITX3. Moreover, the highest expression level of PITX3 and TH was observed when rLMX1A was added to the induction medium supplemented with SHH. To our best knowledge, this is the first report demonstrating the application of TAT-LMX1A recombinant protein to enhance hESC differentiation to DA as shown by the expression of DA specific makers. These findings pave the way for enhancing the differentiation of hESCs to DA neurons safely and efficiently without genetic modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.