Abstract

BackgroundHeterogeneity of endothelial cells (ECs) is a hallmark of the vascular system which may impact the development and management of vascular disorders. Despite the tremendous progress in differentiation of human embryonic stem cells (hESCs) towards endothelial lineage, differentiation into arterial and venous endothelial phenotypes remains elusive. Additionally, current differentiation strategies are hampered by inefficiency, lack of reproducibility, and use of animal-derived products.MethodsTo direct the differentiation of hESCs to endothelial subtypes, H1- and H9-hESCs were seeded on human plasma fibronectin and differentiated under chemically defined conditions by sequential modulation of glycogen synthase kinase-3 (GSK-3), basic fibroblast growth factor (bFGF), bone morphogenetic protein 4 (BMP4) and vascular endothelial growth factor (VEGF) signaling pathways for 5 days. Following the initial differentiation, the endothelial progenitor cells (CD34+CD31+ cells) were sorted and terminally differentiated under serum-free conditions to arterial and venous ECs. The transcriptome and secretome profiles of the two distinct populations of hESC-derived arterial and venous ECs were characterized. Furthermore, the safety and functionality of these cells upon in vivo transplantation were characterized.ResultsSequential modulation of hESCs with GSK-3 inhibitor, bFGF, BMP4 and VEGF resulted in stages reminiscent of primitive streak, early mesoderm/lateral plate mesoderm, and endothelial progenitors under feeder- and serum-free conditions. Furthermore, these endothelial progenitors demonstrated differentiation potential to almost pure populations of arterial and venous endothelial phenotypes under serum-free conditions. Specifically, the endothelial progenitors differentiated to venous ECs in the absence of VEGF, and to arterial phenotype under low concentrations of VEGF. Additionally, these hESC-derived arterial and venous ECs showed distinct molecular and functional profiles in vitro. Furthermore, these hESC-derived arterial and venous ECs were nontumorigenic and were functional in terms of forming perfused microvascular channels upon subcutaneous implantation in the mouse.ConclusionsWe report a simple, rapid, and efficient protocol for directed differentiation of hESCs into endothelial progenitor cells capable of differentiation to arterial and venous ECs under feeder-free and serum-free conditions. This could offer a human platform to study arterial–venous specification for various applications related to drug discovery, disease modeling and regenerative medicine in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-015-0260-5) contains supplementary material, which is available to authorized users.

Highlights

  • Heterogeneity of endothelial cells (ECs) is a hallmark of the vascular system which may impact the development and management of vascular disorders

  • Transplantation of Human embryonic stem cells (hESC)-derived arterial and venous ECs result in formation of microvessels After assessment of the in vitro functionality of the hESC-derived arterial and venous ECs, we investigated whether these ECs have the ability to form functional microvessels upon transplantation, by injecting ECs suspended in Matrigel subcutaneously into the dorsal region of immunodeficient mice

  • We directed the hESCs towards lateral plate mesoderm under feeder-free and chemically defined conditions through short-term inhibition of glycogen synthase kinase-3 (GSK-3) followed by treatment with basic fibroblast growth factor (bFGF) and bone morphogenetic protein 4 (BMP4)

Read more

Summary

Introduction

Heterogeneity of endothelial cells (ECs) is a hallmark of the vascular system which may impact the development and management of vascular disorders. The arterial and venous ECs share certain common molecular signatures such as the expression of pan-endothelial markers (CD31, vascular endothelial cadherin (VE-CAD), and von Willebrand factor (vWF)), they do possess certain distinct molecular profiles [1, 2]. Such molecular distinction seems to occur quite early in the development even before the onset of blood flow and involves the interplay of various signaling pathways such as sonic hedgehog (Shh), vascular endothelial growth factor (VEGF), Notch, cyclic adenosine monophosphate (cAMP), and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) [3]. Genetic, molecular and functional studies of human ECs are limited by the availability of umbilical, neonatal or adult sources

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call