Abstract
In semiconductor manufacturing, hot lots are to provide marketing and engineering with extra flexibility regarding delivery lead times, and in turn enhance its competitive advantages against other companies. On the other hand, hot lots are among major sources of disruption of the smoothness of the manufacturing flow. They can lead to a significant increase of cycle time of normal lots, and in turn result in delayed delivery times and serious service deteriorations. Due to the complex nature of semiconductor manufacturing, evaluating the impact of hot lots on the cycle time of normal lots presents major challenges. In this paper, we propose a methodology, called progressive simulation metamodelling (PSM), that allows for an efficient development of the response surface between the cycle time of normal lots and the percentage of hot lots in semiconductor manufacturing. The response surface generated by the proposed PSM is like an easy-to-use analytical model, but with the fidelity of simulation that takes into account all important manufacturing details. The specially-designed mechanisms, including identifying the critical region and sequentially adding design points in the critical region, further grants PSM computational advantages compared to the traditional response surface method. An empirical study conducted in collaboration with a semiconductor company validates the viability of PSM in real settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.