Abstract

Federated scheduling is a generalization of partitioned scheduling for parallel tasks on multiprocessors, and has been shown to be a competitive scheduling approach. However, federated scheduling may waste resources due to its dedicated allocation of processors to parallel tasks. In this work we introduce a novel algorithm for scheduling parallel tasks that require more than one processor to meet their deadlines (i.e., heavy tasks). The proposed algorithm computes a deterministic schedule for each heavy task based on its internal graph structure. It efficiently exploits the processors allocated to each task and thus reduces the number of processors required by the task. Experimental evaluation shows that our new federated scheduling algorithm significantly outperforms other state-of-the-art federated-based scheduling approaches, including semi-federated scheduling and reservation-based federated scheduling, that were developed to tackle resource waste in federated scheduling, and a stretching algorithm that also uses the tasks' graph structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.