Abstract

The experimental determination of stability lobe diagrams (SLDs) in milling can be realized by either continuously varying the spindle speed or by varying the depth of cut. In this paper, a method for combining both these methods along with an online chatter detection algorithm is proposed for efficient determination of SLDs. To accomplish this, communication between the machine control and chatter detection algorithm is established, and the machine axes are controlled to change the spindle speed or depth of cut. The efficiency of the proposed method is analyzed in this paper.

Highlights

  • Material removal rate (MRR) significantly determines the financial viability of a cutting process

  • A method for combining both these methods along with an online chatter detection algorithm is proposed for efficient determination of SLDs

  • These simulation models of the dynamic milling process are valid for tools with large numbers of teeth and high radial immersion, they still suffer from several disadvantages

Read more

Summary

Introduction

Material removal rate (MRR) significantly determines the financial viability of a cutting process. In the case of conventional as well as high-speed milling, MRR is mainly limited by the maximum achievable depth of cut without process instability or regenerative chatter. The critical depth of cut during milling can be either estimated by a simulation model or established experimentally for a given combination of machine, workpiece, and tool. Several assumption and simplifications regarding material properties, force characteristics, and dynamic behavior are necessary to create a dynamic milling model, which introduces inaccuracies. Despite these simplifications and assumptions, an analytical solution for the stability boundary still requires certain expertise and cannot be readily implemented in the industry

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.