Abstract
When a target undergoes complex 3-D motions, focused inverse synthetic aperture radar (ISAR) images cannot be obtained using any motion compensation algorithms. To address this problem, we propose a method to determine the suitable frame time and length for 2-D ISAR imaging, which exploits phase nonlinearity and discrete polynomial phase transforms. In simulations and experiments, we observed that the proposed method can efficiently select proper frame times and lengths for 2-D ISAR imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.