Abstract

BackgroundHepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Molecular analysis has been frequently used in the study of HCV outbreaks and transmission chains; helping identify a cluster of sequences as linked by transmission if their genetic distances are below a previously defined threshold. However, HCV exists as a population of numerous variants in each infected individual and it has been observed that minority variants in the source are often the ones responsible for transmission, a situation that precludes the use of a single sequence per individual because many such transmissions would be missed.The use of Next-Generation Sequencing immensely increases the sensitivity of transmission detection but brings a considerable computational challenge because all sequences need to be compared among all pairs of samples.MethodsWe developed a three-step strategy that filters pairs of samples according to different criteria: (i) a k-mer bloom filter, (ii) a Levenhstein filter and (iii) a filter of identical sequences. We applied these three filters on a set of samples that cover the spectrum of genetic relationships among HCV cases, from being part of the same transmission cluster, to belonging to different subtypes.ResultsOur three-step filtering strategy rapidly removes 85.1% of all the pairwise sample comparisons and 91.0% of all pairwise sequence comparisons, accurately establishing which pairs of HCV samples are below the relatedness threshold.ConclusionsWe present a fast and efficient three-step filtering strategy that removes most sequence comparisons and accurately establishes transmission links of any threshold-based method. This highly efficient workflow will allow a faster response and molecular detection capacity, improving the rate of detection of viral transmissions with molecular data.

Highlights

  • Hepatitis C is a major public health problem in the United States and worldwide

  • Outbreaks of hepatitis C virus (HCV) infections are associated with unsafe injection practices, drug diversion, and other exposures to blood and blood products

  • HCV exists as a population of numerous variants in each infected individual and it has been observed that minority variants in the source are often the ones responsible for transmission, a situation that precludes the use of a single sequence per individual because many such transmissions would be missed [10]

Read more

Summary

Introduction

Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Molecular phylogenetic analyses of RNA viruses have been used frequently in the study of outbreaks and transmission chains [5,6,7,8,9], usually by analysing a single sequence per infected individual and comparing these sequences to ascertain if their genetic distances are below a previously defined threshold. Our laboratory has been using molecular analysis of Viral Hepatitis populations (rather than single sequence) for more than a decade [11,12,13,14] with a simple and accurate threshold-based approach for detecting HCV transmissions that streamlines molecular investigation of outbreaks, improving the public health capacity for rapid and effective control of hepatitis C [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.