Abstract

ObjectivesThe aim of this study was to develop a reliable, rapid and cost-effective molecular diagnostic assay allowing widespread routine investigation of eIF2B-related disorders (CACH/VWM syndrome). This heterogeneous disease is caused by autosomal recessive mutations in the genes encoding the five subunits of the translation-initiation factor eIF2B. Such a diagnostic method would be particularly adapted to the apparently acute presentation of the disease. Design and methodsWe developed a multiplex PCR amplification method for 7 genomic regions of the eIF2B genes in a single run. This method targeted the 8 most frequent mutations representing 61.4% of all mutations identified to date in our laboratory. These mutations affected eIF2B2 exon 5, eIF2B3 exon 2, eIF2B4 exons 8 and 11 and eIF2B5 exons 5, 7 and 8. PCR products were then pooled and subjected to a primer-extension assay validated using previously genotyped samples. ResultsThe results were compared to screening and/or direct sequencing methods: 100% agreement between methods confirmed equivalent sensitivity and specificity. The new assay was highly superior in terms of cost, time to results and robustness despite sample heterogeneity. ConclusionsThis genotyping strategy allows the detection of all eIF2B mutations targeted. A second multiplex primer-extension assay is in development to detect the 11 next-most frequent mutations, thus raising the global detection rate to 76.8%. Our approach is widely applicable as it involves standard techniques and equipment. Moreover, it can easily be further adapted to the clinical and genetic heterogeneity of eIF2B-related disorders by including or excluding mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call