Abstract

In order to leverage computational complexity and avoid information losses, “big data” analysis requires a new class of algorithms and methods to be designed and implemented. In this sense, information theory-based techniques can play a key role to effectively unveil change and anomaly patterns within big data sets. A framework that aims at detecting the anomaly patterns of a given dataset is introduced. The proposed method, namely PROMODE, relies on a representation of the given dataset performed by means of undirected bipartite graphs. Then the anomalies are searched and detected by progressively spanning the graph. The proposed architecture delivers a computational load that is less than that carried by typical frameworks in literature, so that PROMODE can be considered as a valid algorithm for efficient detection of change patterns in remotely sensed big data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.