Abstract

Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.