Abstract

[EN] Bridges, as an important component of infrastructure, are expected to meet all the requirements for a modern society. Traditionally, the primary aim in bridge design has been to achieve the lowest cost while guaranteeing the structural efficiency. However, concerns regarding building a more sustainable future have change the priorities of society. Ecological and durable structures are increasingly demanded. Under these premises, heuristic optimization methods provide an effective alternative to structural designs based on experience. The emergence of new materials, structural designs and sustainable criteria motivate the need to create a methodology for the automatic and accurate design of a real post-tensioned concrete bridge that considers all these aspects. For the first time, this thesis studies the efficient design of post-tensioned concrete box-girder road bridges from a sustainable point of view. This research integrates environmental, safety and durability criteria into the optimum design of the bridge. The methodology proposed provides multiple trade-off solutions that hardly increase the cost and achieve improved safety and durability. Likewise, this approach quantifies the sustainable criteria in economic terms, and evaluates the effect of these criteria on the best values of the variables. In this context, a multi-objective optimization is formulated to provide multiple trade-off and high-performing solutions that balance economic, ecologic and societal goals. An optimization design program selects the best geometry, concrete type, reinforcement and post-tensioning steel that meet the objectives selected. A three-span continuous box-girder road bridge located in a coastal region is selected for a case study. This approach provides vital knowledge about this type of bridge in the sustainable context. The life-cycle perspective has been included through a lifetime performance evaluation that models the bridge deterioration process due to chloride-induced corrosion. The economic, environmental and societal impacts of maintenance actions required to extend the service life are examined. Therefore, the proposed goals for an efficient design have been switch from initial stage to life-cycle consideration. Faced with the large computational time of multi-objective optimization and finite-element analysis, artificial neural networks (ANNs) are integrated in the proposed methodology. ANNs are trained to predict the structural response based on the design variables, without the need to analyze the bridge response. The multi-objective optimization problem results in a set of trade-off solutions characterized by the presence of conflicting objectives. The final selection of preferred solutions is simplified by a decision-making technique. A rational technique converts a verbal pairwise comparison between criteria with a degree of uncertainty into numerical values that guarantee the consistency of judgments. This thesis gives a guide for the sustainable design of concrete structures. The use of the proposed…

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call