Abstract
The design of an aircraft must always meet opposite criteria. On the one hand, the structure must be strong, rigid, stable and at the same time to have the least weight. The design requirements listed above in modern conditions must be complemented by the requirement of safety increasement of the crew in case of emergency. One of the possible solutions for ensuring safety is creation of structures capable of accumulating impact energy during an emergency landing of an aircraft. Additive technologies have fewer restrictions on the complexity of shape geometry than traditional ones. Modern methods of topological optimization make it possible to determine the direction of power flows in a structure. Based on this data, the optimal design is determined to take into account the requirements of working capacity and minimum weight. The combination of new technologies with topological optimization techniques allows to design parts more efficiently. The article discusses various options of using different approaches of material distribution in a given volume of a part. Topological optimization was performed using the variable density algorithm. This method is used to create a solid and lattice structure of a bracket for wing to fuselage joint of the ATR-42-300 aircraft. A comparison was made between the original bracket, the bracket with a solid structure and lattice structure obtained as a result of topology optimization method. The optimized design options are determined under the requirements of strength and minimum weight in working conditions. The estimation of the energy absorption by the bracket for all three variants of structures under the conditions of an emergency landing was carried out. For the first time, a comparison of the results of topological optimization for a lattice structure and solid structure model of material distribution was performed. The comparison of all options with each other showed that lattice structure is the best design. This type of structure allows to reduce the weight of the original structure by up to 60%. In addition to reducing weight, these structures increase the safety of the crew in case of emergency by increasing energy absorption on impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.