Abstract

Pluripotency can be captured in vitro, providing that the culture environment meets the requirements that avoid differentiation while stimulating self-renewal. From studies in the mouse embryo, two kinds of pluripotent stem cells have been obtained from the early and late epiblast, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), representing the naive and primed states, respectively. All attempts to derive convincing ESCs in ungulates have been unsuccessful, although all attempts were based on the assumption that the conditions used to derive mouse ESCs or human ESC could be applied in other species. Pluripotent cells derived in primates, rabbit, and pig strongly indicate that the state of pluripotency of these cells is, in fact, closer to EpiSCs than to ESCs, and thus depend on fibroblast growth factor (FGF) and Activin signaling pathways. Based on this observation, we have tried to derive EpiSC from the epiblast of bovine elongated embryos as well as ESCs from Day-8 blastocysts. We here show that the core transcription factors Oct4/Sox2/Nanog can be used as markers of pluripotency in the bovine since their expression was restricted to the developing epiblast after Day 8, and disappeared following differentiation of both the ESC-like and EpiSC-like cultures. Although FGF and Activin pathways are indeed present and active in the bovine, it is not sufficient/enough to maintain a long-term pluripotency ex vivo, as was reported for mouse and pig EpiSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.