Abstract

The 3D reconstruction of a scene from 2D images is an important topic in the _x000C_eld of Computer Vision due to the high demand in various applications such as gaming, animations, face recognition, parts inspections, etc. The accuracy of a 3D reconstruction is highly dependent on the accuracy of the correspondence matching between the images. For the purpose of high accuracy of 3D reconstruction system using just two images of the scene, it is important to _x000C_nd accurate correspondence between the image pairs. In this thesis, we implement an accurate 3D reconstruction system from two images of the scene at di_x000B_erent orientation using a normal digital camera. We use epipolar geometry to improvise the performance of the initial coarse correspondence matches between the images. Finally we calculate the reprojection error of the 3D reconstruction system before and after re_x000C_ning the correspondence matches using the epipolar geometry and compare the performance between them. Even though many feature-based correspondence matching techniques provide robust matching required for 3D reconstruction, it gives only coarse correspondence matching between the images. This is not su_x000E_cient to reconstruct the detailed 3D structure of the objects. Therefore we use our improvised image matching to calculate the camera parameters and implement dense image matching using thin-plate spline interpolation, which interpolates the surface based on the initial control points obtained from coarse correspondence matches. Since the thin-plate spline interpolates highly dense points from a very few control points, the correspondence mapping between the images are not accurate. We propose a new method to improve the performance of the dense image matching using epipolar geometry and intensity based thin-plate spline interpolation. We apply the proposed method for 3D reconstruction using two images. Finally, we develop systematic evaluation for our dense 3D reconstruction system and discuss the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.