Abstract

Abciximab (ABX) is a chimeric monoclonal antibody reported for antithrombotic activity but their delivery remains challenging due to its poor stability in a biological system. The purpose of this research was to deliver ABX on the target efficiently using mesoporous silica nanoparticles (MSN). ABX coated mesoporous silica nanoparticles (MSN-ABX) were formulated and analyzed for particle size, shape, zeta-potential, surface morphology and surface chemistry. XPS analysis confirmed the presence of ABX on the surface of amino functionalized mesoporous silica nanoparticles (MSN-NH2). The degree of ABX attachment was 67.53 ± 5.81 % which was demonstrated by the Bradford assay. Furthermore, the targeting efficiency of the targeted nanoparticles has been evaluated by capturing the fluorescent images in-vitro which showed the significant accumulation of the ABX coated nanoparticles towards activated platelets. The significant (P < 0.05) increase in affinity of DiD dye loaded nanoparticles towards the activated platelets was confirmed by using an in-vitro imaging through photon imager optima. The hemolysis study of the nanoparticle formulations revealed that they were non-hemolytic for healthy human blood. The in-vitro antithrombotic effects of MSN-ABX were observed by blood clot assay which revealed its superior antithrombotic activity over clinical injection of ABX and could be a promising carrier for improved ABX targeted delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call