Abstract

Polyacrylamide (PAM) is widely used in polymer flooding processes to increase oil recovery while the byproduct of PAM-containing wastewater is a serious environmental issue. In this study, electrochemical oxidation process (EAOP) was applied for treating PAM wastewater using a new type of 3-dimensional ultra-thin SnO2-Sb electrode. Nano-sized catalysts were evenly dispersed both on the surface and inside of a porous Ti filter forming nano-thickness catalytic layer that enhances the utilization and bonding of catalysts. This porous Ti electrode showed 20% improved OH· production and 16.3 times increased accelerated service life than the planar Ti electrode. Using this electrode to treat 100 mg L−1 PAM, the TOC removal efficiency reached over 99% within 3 h under current density of 20 mA cm−2. The EAOP could fastly break the long-chain PAM molecules into small molecular intermediates. With the porous electrode treating 5 g L−1 PAM under current density of 30 mA cm−2, EAOP reduced 94.2% of average molecular weight in 1 h and 92.0% of solution viscosity in 0.5 h. Moreover, the biodegradability of PAM solution was significantly improved as the solution BOD5/COD ratio raised from 0.05 to 0.41 after 4 h treatment. The degradation pathway of PAM was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.