Abstract

Visible-light-assisted heterogeneous activation of peroxymonosulfate (PMS) exhibits great potential in refractory wastewater treatment. Efficient and environmental-friendly heterogeneous catalysts are the key to drive sustainable development of the process. Herein, the glucose modified CuFeO2 (Glu/CFO) catalysts were synthesized to activate PMS and degrade oxytetracycline (OTC). The modification of glucose introduced more active functional groups on the Glu/CFO surface, the narrowed band gap and increased photogenerated electrons transfer of CuFeO2. The Glu/CFO with 0.5 g glucose possessed more superior catalytic performance than other as-prepared samples. Furthermore, the Glu/CFO-0.5 showed superior reuse performance and high material stability under long-term operation. Significantly, the photogenerated electrons effectively promoted the in-situ cycle of Fe3+ and Cu2+ to Fe2+ and Cu+ on the surface of Glu/CFO-0.5, accelerating the generation of reactive oxygen species (ROSs) and OTC degradation. The results of free radical quenching experiment and ESR demonstrated that the non-free radical pathway dominated by 1O2 was the main way of OTC degradation. Combining XPS spectra, the degradation mechanism of OTC in Vis/PMS/Glu/CFO-0.5 system was elucidated. Based on HPLC-MS analysis and DFT calculation, the possible degradation pathways of OTC were explored in depth, and the toxicity of the corresponding products was analyzed based on quantitative structure–activity relationship predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call