Abstract
To activate peroxymonosulfate (PMS) is an efficient way for decomposition of non-biodegradable organic pollutants. Herein, Mg–Fe layered double oxides decorated with Ti3C2 MXene-derived TiO2@C (T/LDOs) were fabricated to efficiently activate PMS for the degradation of Rhodamine B (RhB), acid red 1 (AR1), methylene blue (MB), and tetracycline hydrochloride (TC). The T/LDOs catalyst could decompose 95.8% of RhB, 94.8% of AR1, 84.9% of MB within 10 min, and 82.4% of TC within 60 min. The degradation rate constant of RhB in the optimal T/LDOs/PMS system was approximately 2.5 and 15.7 times higher than that in the Mg–Fe LDOs/PMS system and Mg–Fe LDH/PMS system, respectively. Importantly, the T/LDOs exhibited a wide working pH range (3.1–11.0) and high stability with low metal ions leaching, indicating its potential practical applications. Quenching experiments and electronic spin resonance results confirmed that both •O2− and 1O2 were the dominant active species in the T/LDOs/PMS system. In addition, the possible degradation pathway of RhB in the 5%-T/LDOs/PMS system was proposed. Finally, the catalytic mechanism study revealed that the T/LDOs with abundant surface hydroxyl groups and a certain amount of TiO2@C facilitated the electron transfer between ≡Fe(Ⅲ)‒OH complex and HSO5−, boosting the generation of •O2− and 1O2. This study provides an insight into exploiting highly efficient catalysts for PMS activation towards the degradation of organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.