Abstract

Ivermectin (IVM) is a widely used antiparasitic agent and acaricide. Despite its high efficiency against nematodes and arthropods, IVM may pose a threat to the environment due to its ecotoxcity. In this study, degradation of IVM by a newly isolated bacterium Aeromonas taiwanensis ZJB-18,044 was investigated. Strain ZJB-18,044 can completely degrade 50 mg/L IVM in 5 d with a biodegradation ability of 0.42 mg/L/h. Meanwhile, it exhibited high tolerance (50 mg/L) to doramectin, emamectin, rifampicin, and spiramycin. It can also efficiently degrade doramectin, emamectin, and spiramycin. The IVM degradation of strain ZJB-18,044 can be inhibited by erythromycin, azithromycin, spiramycin or rifampicin. However, supplement of carbonyl cyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, can partially recover the IVM degradation. Moreover, strain ZJB-18,044 cells can pump out excess IVM to maintain a low intracellular IVM concentration. Therefore, the IVM tolerance of strain ZJB-18,044 may be due to the regulation of the intracellular IVM concentration by the activated macrolide efflux pump(s). With the high IVM degradation efficiency, A. taiwanensis ZJB-18,044 may serve as a bioremediation agent for IVM and other macrolides in the environment.Electronic supplementary materialThe online version of this article (10.1007/s10532-020-09909-8) contains supplementary material, which is available to authorized users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.