Abstract

In recent years, chloroquine phosphate (CQP) has been widely used as a specific drug for treating COVID-19. Because of its biological toxicity, the release of CQP into water is bound to have a potential impact on human health. It is urgent to find a reusable and efficient catalyst to treat a large number of CQP wastewater. Currently, perovskite-type catalysts are gradually entering the field of advanced oxidation process, but there are still some problems such as high particle aggregation and limited reaction contact. Here, LaCo0.5Cu0.5O3-CeO2 was prepared by sol-gel method and used to activate peroxymonosulfate (PMS) to degrade CQP for the first time. The LaCo0.5Cu0.5O3-CeO2 material has better stability, larger specific surface area and more uniform pore structure. Under the conditions of 0.2 g/L catalyst and 1.0 mM PMS, 20 mg/L CQP can be completely degraded within 8 min and is suitable for a wide pH range and complex water quality. Superoxide free radical (·O2-) and the singlet oxygen (1O2) are the main free radicals to degrade CQP. The addition of CeO2 makes Ce4+/Ce3+ participate in the redox cycles between Co3+/Co2+ and Cu2+/Cu+, realizing the multipath electron transfer. In addition, LaCo0.5Cu0.5O3-CeO2/PMS system can degrade CQP into low toxicity products through different pathways, ultimately mineralizing it into inorganic small molecules. In general, LaCo0.5Cu0.5O3-CeO2 has more reasonable structure, efficient and durable catalytic performance, anti-interference ability and low ion leaching level, which provides a new idea for preparing heterogeneous catalyst to activate PMS to treat pharmaceutical wastewater, and has broad practical application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.