Abstract

To the extent that some reactions are oxygen-sensitive, we herein examined the degassing of dissolved oxygen in water and in 2-propanol solvent by microwave heating with regard to the effects of the microwave frequency (2.45GHz versus 915MHz), and with regard to when samples are subjected to electric-field-rich and magnetic-field rich 2.45-GHz microwaves. Changes in the quantity of dissolved oxygen were ascertained by monitoring its concentration in such solvents when exposed to microwave and conventional heating using a polarographic technique and by the chemical oxygen demand (COD) method. The specific microwave (non-thermal) effect played a role in the degassing process on comparing results between microwave heating and conventional heating under identical temperature conditions. The 915-MHz microwaves were more effective, at least at 60°C, owing to their greater penetration into the solutions. No significant differences were found when degassing was carried out on exposing the water sample to 2.45-GHz microwaves with the sample located within the waveguide at positions rich in either the electric field or the magnetic field (T=80°C). Conversion of cyclohexanone to cyclohexanol via hydrogen transfer in the presence of Wilkinson's catalyst and 2-propanol solvent (hydrogen source) was also investigated to assess the effect(s) that microwaves might have on this oxygen-sensitive reaction with respect to product yields in contrast to conventional heating by the oil-bath method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call