Abstract

The energetics of topological defects (TDs) in carbon nanotubes (CNTs) and their kinetic healing during the catalytic growth are explored theoretically. Our study indicates that, with the assistance of a metal catalyst, TDs formed during the addition of C atoms can be efficiently healed at the CNT-catalyst interface. Theoretically, a TD-free CNT wall with 10(8)-10(11) carbon atoms is achievable, and, as a consequence, the growth of perfect CNTs up to 0.1-100 cm long is possible since the linear density of a CNT is ∼100 carbon atoms per nanometer. In addition, the calculation shows that, among catalysts most often used, Fe has the highest efficiency for defect healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.