Abstract

Tremendous efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials with CIEy < 0.10 (Commission International de L’Eclairage (CIE)) and match the National Television System Committee (NTSC) standard blue CIE (x, y) coordinates of (0.14, 0.08) for display applications. However, deep blue fluorescent materials with an external quantum efficiency (EQE) over 5% are still rare. Herein, we report a phenanthroimidazole–sulfone hybrid donor–acceptor (D–A) molecule with efficient deep blue emission. D–A structure molecular design has been proven to be an effective strategy to obtain high electroluminescence (EL) efficiency. In general, charge transfer (CT) exciton formed between donor and acceptor is a weak coulomb bonded hole–electron pair and is favorable for the spin flip that can turn triplet excitons into singlet ones. However, the photoluminescence quantum yield (PLQY) of CT exciton is usually very low. On the other hand, a locally excited (LE) state normally ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call