Abstract

In this study, iron oxide nanoparticles (IO-NPs) with a mean diameter of 102.85 nm were firstly synthesized via a facile green route using Ulva spp. aqueous extract as a bioreductant agent. Then, IO-NPs were loaded into carbonated hydroxyapatite (c-Hap) and the final product was named as the iron oxide nanoparticles loaded carbonated hydroxyapatite (IO-NPs-Lc-Hap). Subsequently, IO-NPs-Lc-Hap was characterized by FT-IR, SEM, XRD and EDX analysis methods. MG colour removal efficiencies of Ulva spp., Hap, IO-NPs and IO-NPs-Lc-Hap materials were also evaluated by adsorption and/or Fenton-like reaction methods. IO-NPs-Lc-Hap with the highest decolourization capacity was chosen as a heterogeneous Fenton-like catalyst for Malachite Green (MG). For Fenton-like decolourization of MG, the optimum H2O2 concentration, initial dye concentration and catalyst concentration were determined to be 30 mM, 100 mg/L and 1.0 g/L, respectively. At these optimum conditions, 100% decolourization efficiency and 33.3% COD removal were obtained. On the other hand, 94% decolourization efficiency and 42% COD removal were achieved for the real textile wastewater at the obtained optimum conditions. The experimental decolourization reaction rate for MG was determined as −rd = 0.0779 [(mg dye0.3) (g cat−0.3) (min−1)] × qt0.7. Also, the catalyst had high decolourization efficiencies at the end of six sequence usages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.