Abstract
The authors explore a new data mining capability that involves mining path traversal patterns in a distributed information-providing environment where documents or objects are linked together to facilitate interactive access. The solution procedure consists of two steps. First, they derive an algorithm to convert the original sequence of log data into a set of maximal forward references. By doing so, one can filter out the effect of some backward references, which are mainly made for ease of traveling and concentrate on mining meaningful user access sequences. Second, they derive algorithms to determine the frequent traversal patterns-i.e., large reference sequences-from the maximal forward references obtained. Two algorithms are devised for determining large reference sequences; one is based on some hashing and pruning techniques, and the other is further improved with the option of determining large reference sequences in batch so as to reduce the number of database scans required. Performance of these two methods is comparatively analyzed. It is shown that the option of selective scan is very advantageous and can lead to prominent performance improvement. Sensitivity analysis on various parameters is conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.