Abstract
Data augmentation improves the convergence of iterative algorithms, such as the EM algorithm and Gibbs sampler by introducing carefully designed latent variables. In this article, we first propose a data augmentation scheme for the first-order autoregression plus noise model, where optimal values of working parameters introduced for recentering and rescaling of the latent states, can be derived analytically by minimizing the fraction of missing information in the EM algorithm. The proposed data augmentation scheme is then utilized to design efficient Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference of some non-Gaussian and nonlinear state space models, via a mixture of normals approximation coupled with a block-specific reparametrization strategy. Applications on simulated and benchmark real data sets indicate that the proposed MCMC sampler can yield improvements in simulation efficiency compared with centering, noncentering and even the ancillarity-sufficiency interweaving strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.