Abstract

Fast and efficient solution techniques are developed for high-dimensional parabolic partial differential equations (PDEs). In this paper we present a robust solver based on the Krylov subspace method Bi-CGSTAB combined with a powerful, and efficient, multigrid preconditioner. Instead of developing the perfect multigrid method, as a stand-alone solver for a single problem discretized on a certain grid, we aim for a method that converges well for a wide class of discrete problems arising from discretization on various anisotropic grids. This is exactly what we encounter during a sparse grid computation of a high-dimensional problem. Different multigrid components are discussed and presented with operator construction formulae. An option-pricing application is focused and presented with results computed with this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.