Abstract

The aim of this study was to assess modified droplet vitrification (MDV) for the cryopreservation of early developmental mouse embryos. Mouse embryos were equilibrated in holding solution for 3min followed by immersion in vitrification solution for 30–45s, and then three embryos per 3-μL vitrification droplet were directly dropped into liquid nitrogen. Vitrified embryos were warmed to examine their developmental potential both in vitro and in vivo. The results demonstrated that MDV vitrified and warmed embryos had a survival rate of 98.1–99.6% (P>0.05); however, blastocyst development post warming and culture in vitro demonstrated that vitrified 4-celled, 8-celled, 16-celled, morulae, and blastocyst embryos had significant higher developmental potentials (94.7–99.5%) than those from zygotes (9.2%) and 2-celled embryos (85.7%) (P<0.05). Compared to CryoLoop and CryoTech vitrification, MDV showed similar results with regards to rates of survival, blastocyst development, but with the higher hatching rate (76.1% vs. 64.0–67.3%) (P<0.05). Cryopreservation by MDV resulted in a similar blastocyst developmental potential in 4-celled and 16 celled embryos from ICR (94.7–99.5%), C57BL/6J (94.7–96.4%), and their crossbred F1 strain (97.9–98.9%) (P>0.05). After embryo transfer of vitrified ICR embryos from 4-celled, 16-celled, morulae and blastocyst stage, 40.7–43.7% of the embryos developed into live offspring (P>0.05), but MDV vitrification resulted in the highest birth rate (43.8%) compared to CryoLoop (38.3%) and CryoTech (35.4%) (P<0.05), when 4-celled mouse embryos were used for vitrification. Our study clearly demonstrated that MDV is the most efficient vitrification to cryopreserve embryos at least 4-celled and advanced stages, which can be used to preserve important mouse genomes from different strains and different developmental stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.