Abstract

Vehicle pose estimation with light detection and ranging (LiDAR) is essential in the perception technology of autonomous driving. However, because of incomplete observation measurements and sparsity of the LiDAR point cloud, it is challenging to achieve satisfactory pose extraction based on 3D LiDAR with the existing pose estimation methods. In addition, the demand for real-time performance further increases the difficulty of the pose estimation task. In this paper, we propose a novel vehicle pose estimation method based on the convex hull. The extracted 3D cluster is reduced to the convex hull, reducing the subsequent computation burden while preserving essential contour information. Subsequently, a novel criterion based on the minimum occlusion area is developed for the search-based algorithm, enabling accurate pose estimation. Additionally, this criterion renders the proposed algorithm particularly well-suited for obstacle avoidance. The proposed algorithm is validated on the KITTI dataset and a manually labeled dataset acquired at an industrial park. The results demonstrate that our proposed method can achieve better accuracy than the classical pose estimation method while maintaining real-time speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.