Abstract

Developing an efficient and environment-friendly route for waste valorization is extremely significant in accelerating the transition toward a circular economy. A novel waste-to-synthetic natural gas (SNG) conversion process comprising hybrid renewable energy systems is proposed for this purpose. This includes thermochemical waste conversion and power-to-gas technologies for simultaneous waste utilization and renewable energy storage applications. The energy and environmental performances of the proposed waste-to-SNG plant are assessed and optimized. Results indicated that the implementation of a thermal pretreatment unit prior to the plasma gasification (two-step) is beneficial to improve the yield of hydrogen in the syngas, thereby leading to less renewable energy requirement for green hydrogen production used in the methanation process. This also enhances SNG yield by a factor of 30% as compared to the case without thermal pretreatment (one-step). The overall energy efficiency (OE) of the proposed waste-to-SNG plant is in the range of 61.36–77.73%, while the energy return on investment (EROI) ranges between 2.66 and 6.11. Most environmental impacts are mainly contributed by the indirect carbon emissions as a consequence of the power requirement for thermal pretreatment, plasma gasifier, and auxiliary equipment. The value of specific electricity consumption for SNG production of the treated RDF exhibits 1.70–9.25 % less than that of raw RDF when the pretreatment temperature is less than 300 °C. The OE of the system declines by 4.52% when 50 wt% of biomass is mixed in the fuel, whereas an enhancement of 18.33% in EROI and a reduction of 16.19% in specific CO2 emissions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call