Abstract

Fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy (NV−) centers are promising for a wide range of applications, such as for sensing, as fluorescence biomarkers, or to hyperpolarize nuclear spins. NV− centers are formed from substitutional nitrogen (P1 centers) defects and vacancies in the diamond lattice. Maximizing the concentration of NVs is most beneficial, which justifies the search for methods with a high yield of conversion from P1 to NV−. We report here the characterization of surface cleaned fluorescent micro- and nanodiamonds, obtained by irradiation of commercial diamond powder with high-energy (10 MeV) electrons and simultaneous annealing at 800 ∘C. Using this technique and increasing the irradiation dose, we demonstrate the creation of NV− with up to 25% conversion yield. Finally, we monitor the creation of irradiation-induced spin-1 defects in microdiamond particles, which we associate with W16 and W33 centers, and investigate the effects of irradiation dose and particle size on the coherence time of NV−.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.