Abstract

Catalytic conversion of carbohydrates into valuable chemical and liquid fuels has received considerable attention in recent years. In this study, sulfonic acid-functionalized ordered mesoporous carbon (OMC-SO3H) was prepared and well characterized by physical techniques such as TEM, nitrogen physisorption measurements and XRD. The as-prepared OMC-SO3H was then used for the acid-catalyzed conversion of fructose based carbohydrates into 5-hydroxylmethylfurfan (HMF) or 5-ethoxymethylfurfural (EMF). Due to the high surface area and high acidity, the OMC-SO3H catalyst showed a comparable catalytic performance as the homogeneous catalysts. The dehydration of fructose over the OMC-SO3H catalyst produced a high HMF yield of 89.4% in DMSO at 120°C within 30min. The one-pot transformation of fructose carbohydrates were also smoothly performed, affording EMF yields of 55.7%, 53.6% and 26.8% from fructose, iuline and sucrose after 24h at 140°C, respectively. Furthermore, the OMC-SO3H catalyst can be reused and no apparent loss of the activity was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call