Abstract

Fructooligosaccharides (FOSs) are excellent food ingredients or feed additives by stimulating probiotics. In this paper, a CREA gene encoding a glucose repressor in the β-fructofuranosidase producer Aureobasidium melanogenum 33 with high-level FOS biosynthesis was disrupted, and glucose repression in disruptant D28 was relieved. The disruptant D28 produced up to 2100 U/mL of β-fructofuranosidase activity, whereas the enzyme activities produced by parent strain 33 and complemented strain C11 were below 600 U/mL. The whole cells of the disruptant D28 was used to convert cane molasses into FOSs, and 0.58 g of FOSs/g of molasses sugar was synthesized from 350 g/L cane molasses sugar within 4 h. Results demonstrated that the industrial waste cane molasses can be efficiently converted into FOSs by the glucose derepression mutant D28 with high β-fructofuranosidase activity. This low-cost and environmentally friendly bioprocess has great potential applications in bioengineering and biotechnology for FOS production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.