Abstract

<abstract> <p>Statistical process control is a procedure of quality control that is widely used in industrial processes to enable monitoring by using statistical techniques. All production processes are faced with natural and unnatural variations. To maintain the stability of the production process and reduce variation, different tools are used. Control charts are significant tools to monitor a production process. In this article, we design an extended exponentially weighted moving average (EEWMA) chart under the assumption of inverse Maxwell (IM) distribution, an IM EEWMA (IMEEWMA) control chart. We have estimated the performance of the proposed chart in terms of various run-length (RL) properties, including the average RL, standard deviation of the RL and median RL. We have also carried out a comparative analysis of the proposed chart with the existing Shewhart-type chart for IM distribution (VIM chart) and IM exponential weighted moving average (IMEWMA) chart. We observed that the proposed IMEEWMA chart performed better than the VIM chart and IMEWMA chart in terms of the ability to detect small and moderate shifts. To demonstrate its practical application, we have applied the IMEEWMA chart, along with existing control charts, to monitor the lifetime of car brake pad data. This real-world example illustrates the superiority of the IMEEWMA chart over its counterparts in industrial scenarios.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.