Abstract

Results of a detailed experimental investigation aimed at reducing the thermal loading problem in a cw Cr(4+):forsterite laser at elevated temperatures are presented. From a Cr(4+):forsterite crystal with a differential absorption coefficient of 0.57 cm(-1), as much as 900 mW of cw output power has been obtained at 1.26 mum and at a crystal boundary temperature of 15 degrees C with an absorbed pump power of only 4.5 W at 1.06 mum. No chopping of the pump beam was necessary. An efficient radiative cooling technique was further employed to cool the laser and no subsequent power fading was observed. To the author's knowledge, the measured absorbed power slope efficiency of 29.5% represents the highest cw power performance reported to date from a Cr(4+):forsterite laser pumped by a Nd:YAG laser around room temperature. The role of the low differential absorption coefficient in the reduction of thermal loading is further elucidated by presenting comparative cw power performance data with a second Cr(4+):forsterite crystal having a differential absorption coefficient of 1.78 cm(-1) in the temperature range between 12 and 35 degrees C. Finally, some interesting multipulse effects of the laser observed in the millisecond regime during quasi-cw operation at 50% duty cycle are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.