Abstract

In this paper, we propose an efficient method to answer continuous k nearest neighbor (CkNN) queries in spatial networks. Assuming a moving query object and a set of data objects that make frequent and arbitrary moves on a spatial network with dynamically changing edge weights, CkNN continuously monitors the nearest (in network distance) neighboring objects to the query. Previous CkNN methods are inefficient and, hence, fail to scale in large networks with numerous data objects because: 1) they heavily rely on Dijkstra-based blind expansion for network distance computation that incurs excessively redundant cost particularly in large networks, and 2) they blindly map all object location updates to the network disregarding whether the updates are relevant to the CkNN query result. With our method, termed ER-CkNN (short for Euclidian Restriction based CkNN), we utilize ER to address both of these shortcomings. Specifically, with ER we enable 1) guided search (rather than blind expansion) for efficient network distance calculation, and 2) localized mapping (rather than blind mapping) to avoid the intolerable cost of redundant object location mapping. We demonstrate the efficiency of ER-CkNN via extensive experimental evaluations with real world datasets consisting of a variety of large spatial networks with numerous moving objects.KeywordsShort PathData ObjectQuery ProcessingRange QueryQuery PointThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.