Abstract

Virtual tools and methods are becoming increasingly important in order to predict the geometric outcome in early phases of the product realization process. Method of influence coefficients (MIC) in combination with Monte Carlo simulation (MCS) is a well-known technique that can be used in nonrigid variation simulation. In these simulations, contact modeling is important to ensure a correct result. Contact modeling simulates how mating surfaces are hindered from penetrating each other, giving rise to contact forces that contribute to the deformation of the parts when assembled and the final shape of the subassembly after springback. These contact forces have to be taken into consideration in each MCS-iteration. To secure reasonable response times, the calculation of the contact forces needs to be fast. In this paper, we formulate a quadratic programming (QP) problem to solve the contact problem. The case studies presented show that node-based contact modeling can be efficiently solved through QP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.