Abstract

We consider the problem of constructing a canonical polyadic (CP) decomposition for a tensor network, rather than a single tensor. We illustrate how it is possible to reduce the complexity of constructing an approximate CP representation of the network by leveraging its structure in the course of the CP factor optimization. The utility of this technique is demonstrated for the order-4 Coulomb interaction tensor approximated by two order-3 tensors via an approximate generalized square-root (SQ) factorization, such as density fitting or (pivoted) Cholesky. The complexity of constructing a four-way CP decomposition is reduced from (for the nonapproximated Coulomb tensor) to (for the SQ-factorized Coulomb tensor), where n and RCP are the basis and CP ranks, respectively. This reduces the cost of constructing the CP approximation of two-body interaction tensors of relevance to accurate many-body electronic structure by up to 2 orders of magnitude for systems with up to 36 atoms studied here. The full four-way CP approximation of the Coulomb interaction tensor is shown to be more accurate than the known approaches which utilize CP-factorizations of the SQ factors (which are also constructed with an cost), such as the algebraic pseudospectral and tensor hypercontraction approaches. The CP-decomposed SQ factors can also serve as a robust initial guess for the four-way CP factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call