Abstract

In this paper, we propose a connected-index approach to construct efficient finite-length arithmetic codes by splitting the information of the last nonfitting symbol into the current and subsequent codewords. The proposed arithmetic codes, which limit the error propagation in about one block, require neither a post-appended end-of-block symbol, nor pre-affixed side-information, to characterize the number of encoded symbols. Hence, the proposed finite-length arithmetic codes can nearly achieve the coding efficiency attained by infinite-length arithmetic codes. With high coding efficiency, limited error-propagation, and the regular process, the proposed coding approach is suitable for information exchange with small packets in modern high-speed network systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.