Abstract

The time-dependent failure probability function (TDFPF) is defined as a function of the time-dependent failure probability (TDFP) varying with the design parameters and the service time, and it is useful in the reliability-based design optimization for the time-dependent problem. For the lack of method estimating TDFPF, the direct Monte Carlo simulation (DMCS) and an adaptive Kriging-MCS based on Bayes formula (shorten as AK-MCS-Bay) are developed to estimate TDFPF. The DMCS is time-consuming, but its convergent solution can be used as reference to validate other methods. In the AK-MCS-Bay, the TDFPF is primarily transformed into the estimation of the augmented TDFP and the conditional probability density function (PDF) of design parameters on the time-dependent failure event. Then, a single AK model is constructed to efficiently identify the failure samples in the MCS sample pool at different service times. By using these identified failure samples, the TDFPs under different service times can be estimated by the double-loop MCS without any extra model evaluations, and the conditional PDF of design parameters can be also acquired by the kernel density estimation method. The numerical and engineering examples indicate the efficiency and accuracy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.