Abstract

Efficient computational algorithms for the trajectory control of multiarm free-flying space robots are presented. The motion of the aircraft itself during manipulation is considered in order to obtain an accurate trajectory control. The generalized Jacobian of multiarm free-flying space robots is obtained efficiently by regarding the total multilink system as a composite system consisting of two links with a joint. The algorithm can be easily extended to any tree-structured multiarm robot with rotational as well as prismatic joints except for closed-loop structures. An efficient computational algorithm for the resolved acceleration control of the multiarm free-flying robots is also presented. The computational complexities are evaluated and compared to those of fixed-base manipulators. It is shown that the computational complexity for the generalized Jacobian is five times greater than that for fixed-base manipulators whereas the resolved acceleration control requires twice the computation for fixed-base manipulators. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.