Abstract
Finite topological spaces and their dimensions have many applications in computer science, e.g., in digital topology, computer graphics and the analysis and synthesis of digital images. Georgiou et. al. [11] provided a polynomial algorithm for computing the covering dimension dim(X; 𝒯) of a finite topological space (X; 𝒯). In addition, they asked whether algorithms of the same complexity for computing the small inductive dimension ind(X; 𝒯) and the large inductive dimension Ind(X; 𝒯) can be developed. The first problem was solved in a previous paper [4]. Using results of the that paper, we also solve the second problem in this paper. We present a polynomial algorithm for Ind(X; 𝒯), so that there are now efficient algorithms for the three most important notions of a dimension in topology. Our solution reduces the computation of Ind(X; 𝒯), where the specialisation pre-order of (X; 𝒯) is taken as input, to the computation of the maximal height of a specific class of directed binary trees within the partially ordered set. For the latter an efficient algorithm is presented that is based on order- and graph-theoretic ideas. Also refinements and variants of the algorithm are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.