Abstract
We present efficient algorithms for Quantile Join Queries, abbreviated as %JQ. A %JQ asks for the answer at a specified relative position (e.g., 50% for the median) under some ordering over the answers to a Join Query (JQ). Our goal is to avoid materializing the set of all join answers, and to achieve quasilinear time in the size of the database, regardless of the total number of answers. A recent dichotomy result rules out the existence of such an algorithm for a general family of queries and orders. Specifically, for acyclic JQs without self-joins, the problem becomes intractable for ordering by sum whenever we join more than two relations (and these joins are not trivial intersections). Moreover, even for basic ranking functions beyond sum, such as min or max over different attributes, so far it is not known whether there is any nontrivial tractable %JQ. In this work, we develop a new approach to solving %JQ. Our solution uses two subroutines: The first one needs to select what we call a "pivot answer". The second subroutine partitions the space of query answers according to this pivot, and continues searching in one partition that is represented as new %JQ over a new database. For pivot selection, we develop an algorithm that works for a large class of ranking functions that are appropriately monotone. The second subroutine requires a customized construction for the specific ranking function at hand. We show the benefit and generality of our approach by using it to establish several new complexity results. First, we prove the tractability of min and max for all acyclic JQs, thereby resolving the above question. Second, we extend the previous %JQ dichotomy for sum to all partial sums. Third, we handle the intractable cases of sum by devising a deterministic approximation scheme that applies to every acyclic JQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.