Abstract
We propose an efficient approach for the computation of cumulative distribution functions of ${N}$ correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literature, it employs a fast and accurate randomized quasi-Monte Carlo method that markedly reduces the computational complexity by several orders of magnitude as ${N}$ or the correlation among the RVs increases. Numerical results show that an order of magnitude larger values of ${N}$ can now be computed for. Its application to the performance analysis of selection combining is also shown.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.