Abstract

Models from random matrix theory (RMT) are increasingly used to gain insights into the behavior of statistical methods under high-dimensional asymptotics. However, the applicability of the framework is limited by numerical problems. Consider the usual model of multivariate statistics where the data is a sample from a multivariate distribution with a given covariance matrix. Under high-dimensional asymptotics, there is a deterministic map from the distribution of eigenvalues of the population covariance matrix (the population spectral distribution or PSD), to the of empirical spectral distribution (ESD). The current methods for computing this map are inefficient, and this limits the applicability of the theory. We propose a new method to compute numerically the ESD from an arbitrary input PSD. Our method, called SPECTRODE, finds the support and the density of the ESD to high precision; we prove this for finite discrete distributions. In computational experiments SPECTRODE outperforms existing methods by orders of magnitude in speed and accuracy. We apply it to compute expectations and contour integrals of the ESD, which are often central in applications. We also illustrate that SPECTRODE is directly useful in statistical problems, such as estimation and hypothesis testing for covariance matrices. Our proposal, implemented in open source software, may broaden the use of RMT in high-dimensional data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.