Abstract
Abstract We propose a new method for the efficient approximation of a class of highly oscillatory weighted integrals where the oscillatory function depends on the frequency parameter ω ≥ 0 ${\omega \ge 0}$ , typically varying in a large interval. Our approach is based, for a fixed but arbitrary oscillator, on the pre-computation and low-parametric approximation of certain ω-dependent prototype functions whose evaluation leads in a straightforward way to recover the target integral. The difficulty that arises is that these prototype functions consist of oscillatory integrals which makes them difficult to evaluate. Furthermore, they have to be approximated typically in large intervals. Here we use the quantized-tensor train (QTT) approximation method for functional M-vectors of logarithmic complexity in M in combination with a cross-approximation scheme for TT tensors. This allows the accurate approximation and efficient storage of these functions in the wide range of grid and frequency parameters. Numerical examples illustrate the efficiency of the QTT-based numerical integration scheme on various examples in one and several spatial dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.